## A RAPID, EFFICIENT AND SELECTIVE CONVERSION OF ALDEHYDES AND ACETALS TO THEIR 1,3-DITHIANE DERIVATIVES WITH 2,2-DIMETHYL-2-SILA-1,3-DITHIANE<sup>1</sup>

John A. Soderquist<sup>\*</sup> and Edgar I. Miranda<sup>2</sup> Department of Chemistry, University of Puerto Rico Rio Piedras, Puerto Rico 00931

Abstract: Aldehydes and acetals are cleanly and rapidly converted to the corresponding dithianes with 2,2-dimethyl-2-sila-1,3-dithiane and stoichiometric amounts of boron trifluoride etherate even in the presence of ketones, which do not react competitively with the reagent.

The pioneering studies of Corey and Seebach<sup>3</sup> on the chemistry of 2-lithiated-1,3-dithianes as acyl anion equivalents rapidly established these compounds as important reagents for organic synthesis.<sup>4</sup> The prerequisite dithianes are prepared from the aldehydes and 1,3-propanedithiol employing an acid catalyst such as HCl, BF3-OEt2 or ZnCl2. The lithiated derivatives are obtained from the corresponding dithiane by deprotonation with butyllithium.<sup>5</sup>



Our interest in the chemistry of 1 and 2 stems from their importance in the preparation of acylsilanes.<sup>6</sup> Invariably, as has been pointed out by Seebach and Corey,<sup>5</sup> the preparation of 1 results in the formation of a yellowish contaminant in minor amounts. It must be removed from 1 either by recrystallization or fractional distillation prior to carrying out the lithation. Moreover, the reaction times employed in preparation of  ${f 1}$  from aldehydes and propanedithiol are quite variable ( 1-15 h ).

Often, silyl-modified reagents offer synthetic advantages to their protic counterparts and, thiosilane/zinc iodide systems are selective in the case of dithiane formation.<sup>7</sup> Seeking a silyl-modified reagent that could be obtained in high yield and chemical purity from commercial (97%) 1,3-propanedithiol, 2,2-dimethyl-2-sila-1,3-dithiane (3)<sup>8</sup> was particularly attractive in that we find that its isolation removes the yellow impurities to result in colorless dithianes.

In contrast to the Corey-Seebach acid-catalyzed procedure, the reaction of 3 proceeds to completion only with a stoichiometric amount of BF<sub>3</sub>-OEt<sub>2</sub> (ie. 1:BF<sub>3</sub> = 3:1 for RCHO and ca. 2:1 for RCH(OMe) $_2$ ). However, this is certainly not a drawback to the use of 1 because the reaction can be precisely controlled by the amount of BF<sub>3</sub> added and occurs instantaneously and essentia-11y quantitatively by GC analysis (cf. Table 1).

As a representative procedure, the synthesis of lf was carried out as follows: To a stirred mixture of 3 (4.56g; 27.8 mmol) and pivaldehyde (2.35g; 27.3 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (12.5 mL) at Ø<sup>O</sup>C was added BF<sub>3</sub>-OEt<sub>2</sub> (1.2 mL; 9.6 mmol) dropwise. After the addition was completed, NaF solution (10mL, 1.00 M) was added, and, after separation with ether, the organic layer was dried (K<sub>2</sub>CO<sub>3</sub>), concentrated at reduced pressure, and the colorless residue was recrystallized from 90% aqueous MeOH to give 4.0g (82%) of chromatographically and spectroscopically pure lf (mp 33-34.5; [lit]<sup>5</sup> 35.5-36).

6305



| TABLE | 1. | 1,3-DITHIANES | FROM | ALDEHYDES | OR | ACETALS | AND | 3/BF 2-ETHERATE. |
|-------|----|---------------|------|-----------|----|---------|-----|------------------|
|-------|----|---------------|------|-----------|----|---------|-----|------------------|

| RCHO or RCH (OMe) 2            | Product Dithiane | % Yield <sup>a</sup> |
|--------------------------------|------------------|----------------------|
| MeCHO                          | la               | 99                   |
| n-PrCHO                        | 1b               | 98                   |
| n-BuCHO                        | lc               | 99                   |
| <u>i</u> -PrCHO                | 1d               | 98                   |
| PhCHO                          | le               | 98                   |
| t-BuCHO                        | 1f               | 99 (82) <sup>b</sup> |
| piperonal                      | lg               | 94 <sup>b</sup>      |
| EtCH (OMe) <sub>2</sub>        | lh               | 95                   |
| MeCH (OMe) $CH_2CH$ (OMe) $_2$ | <b>1i</b>        | 94                   |

<sup>a</sup> Yields were determined by GC analysis of reaction mixtures containing an internal hydrocarbon standard. Complete spectroscopic data, consistent with the assigned structures, were obtained for all products. <sup>b</sup> Isolated yield.

The reaction is completely selective for aldehydes showing no tendency to react with ketones in competitive experiments. Thus, with pentanal vs 2-heptanone and one eq of 3, only 1c (98%) was formed. However, with pentanal vs benzaldehyde, 1c (46%) and 1e (47%) were formed in essentially equal amounts as was the case with pentanal vs 1,1-dimethoxypropane ( 1c (51%) and lh (41%)). The Corey-Seebach procedure exhibits a similar selectivity (ie. 64:24 for lc and le; only lc (98%) for pentanal vs 2-heptanone).

With acetals, the principal by-products are Me<sub>2</sub>SiF<sub>2</sub> and B(OMe)<sub>3</sub> as determined by NMR and GC/MS.<sup>8</sup> With aldehydes, the major by-product by NMR is consistent with the formulation, B(OSiMe $_2$ F) $_3$ . However, with an excess of BF $_3$ , the methylsilane region, in both the  $^1$ H and  $^{13}$ C NMR of the reaction mixtures, becomes very complex, indicating that additional products are formed. Moreover, the direct distillation of reaction mixtures gives small amounts of cyclic siloxanes (ie.  $[Me_2Si0]_n$  n = 5,6 and 7) by GC/MS<sup>10</sup> which might be expected to originate from the decomposition of a fluorosilylborate species. Thus, the formation of fluorosilane products explains the stoichiometric requirement for the BF3 in these reactions.

## REFERENCES

1. Dedicated to Professor George Zweifel on the occasion of his 60th birthday.

- 2. Research student supported by the UPR-FIPI program.
- 3. Corey, E. J.; Seebach, D. Angew. Chem. Inter. Ed. Engl. 1965, 4, 1075, 1077.

4. a) Gröbel, B.-T.; Seebach, D. Syn. 1977, 357. b) Lever Jr., W. O. Tetrahedron 1976, 32, 1943. c) Hase, T. A.; Koskimies, J. K. Aldrichimica Acta 1982, 15, 35.

5. Corey, E. J.; Seebach, D. J. Org. Chem. **1975**, <u>40</u>, <u>231</u>. 6. a. Brook, A. G.; Duff, J. M.; Jones, P. F.; Davis, N. R. J. Am. Chem. Soc. **1967**, <u>89</u>, <u>431</u>. b. Corey, E. J.; Seebach, D.; Freedman, R. J. Am. Chem. Soc. 1967, 89, 434. 7. a) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99,

5009. b) Sakarai, H. private communication.

8. Weibert, M.; Schmidt, M. J. Organomet. Chem. 1964, 1, 336. See also: Yamazaki, N.; Nakahama,

S.; Yamaguchi, K.; Yamaguchi, T. <u>Chem</u>. Lett. **1988**, 1355 9. a. For acetals:  $B(OMe)_3$  (<sup>1</sup>B 18.9 ppm; <sup>1</sup>H 3.3 ppm; <sup>13</sup>C 50.6 ppm);  $SiMe_2F_2$  (<sup>1</sup>H 0.1(t) ppm, J = 6.2 Hz; <sup>13</sup>C -3.8(t) ppm, J = 17 Hz; MS  $\underline{m/z}$  96(16%); 81(100%). b. For aldehydes:  $B(OSiFMe_2)_3$ : (<sup>11</sup>B 15-17(variable) ppm; <sup>1</sup>H -0.05(d) ppm, J = 6.4 Hz; <sup>13</sup>C -2.1(d) ppm, J = 18 Hz). 10. Vanden Heuvel, W. J. A.; Smith, J. L.; Firestone, R. A.; Beck, J. L. Anal. Letters 1972, 5, 285.

(Received in USA 29 September 1986)